Векторная алгебра Аналитическая геометрия

Часы Pandora Gold

Часы Pandora Gold

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Живопись Франции
Живопись Испания
Курбе и реализм
Промышленная архитектура и
эстетика века машин
Инженерная графика
Изображения геометрических
фигур
Метод центрального
проецирования
Аксонометрические
изображения деталей
Graphisoft
Строительное проектирование
Импрессионизм
художественная школа
3D Studio VIZ
Архитектурные программы
Autodesk AutoCAD
аналитическая геометрия
Исследование функций
Дифференциальное исчисление
Элементы линейной алгебры
Пределы
Векторная алгебра
Математический анализ
Предел функции
Производная и дифференциал
Неопределенный интеграл
Числовые последовательности
Графические методы решения задач
Изображения фигур на плоскости
ArchiCAD
Архитектура во время перемен
Русские художники начала 20 века
Период конструктивизма
Баухаус
Архитектура Москвы
Обьединения русских художников и скульпторов
Русские художники шестидесятники
Восточное возрождение
Западное возрождение
Фома Аквинский
Проторенессанс XIII век
Maya 3D
Работа с мазками
Редактирование эффектов
рисования
Дополнительные эффекты
рисования
Центральный процессор
персонального компьютера
Лекции по физике теория газов
История развития ПК
Сетевые службы Active Directory
Диспетчер доступа
Межсетевое экранирование
Ядерные топливные циклы

Системы линейных уравнений.

Задача. Вычислить определитель .

Решить систему методом Гаусса, матричным способом и используя правило Крамера.

Решим систему методом Крамера. Главный определитель системы

Выполнить действия:

Векторная алгебра.

Задание: Коллинеарны ли векторы  и , разложенные по векторам  и , где

Перпендикулярны ли векторы ?

При каком значении  векторы  где , перпендикулярны?

Для нахождения длины вектора воспользуемся формулой:, для этого найдем проекции векторов на оси координат, так же найдем сумму векторов по правилу сложения векторов, заданных проекциями на оси координат Направление вектора определяется углами , образованными им с осями координат  Косинусы этих углов (направляющие косинусы вектора) определяются по формулам Векторное произведение векторов

Даны координаты вершин пирамиды:

Аналитическая геометрия

Даны три последовательные вершины параллелограмма А(2;-3), В(5;1),С(3;-4). Составим уравнение прямой AD. Составим уравнение высоты , проведенной из вершины  на сторону  как уравнение прямой, проходящей через точку  перпендикулярно прямой . Найдем уравнение диагонали  как уравнение прямой, проходящей через точки и , где  - середина отрезка . Найдем тангенс угла между диагоналями  и .

Составить уравнение плоскости, проходящей через точки , , .

Найти расстояние от точки  до плоскости : .

Найти косинус угла между плоскостями  и .

Найти направляющий вектор прямой .

Составить канонические уравнения прямой , проходящей через точку  параллельно прямой :

Найти угол между прямой :  и плоскостью : ..

Составить уравнение плоскости , проходящей через точку  перпендикулярно прямой : .

Составить канонические уравнения прямой , проходящей через точку  перпендикулярно плоскости :

К кривым второго порядка относятся эллипс, гипербола, парабола. Приведем рисунки и канонические уравнения этих кривых.

Привести уравнение кривой второго порядка  к каноническому виду и построить кривую. Решение. Для приведения уравнения кривой второго порядка к каноническому виду применяют метод выделения полного квадрата.

Привести уравнение кривой второго порядка  к каноническому виду и построить кривую.

Кривая задана в полярной системе координат уравнением .

Построить на плоскости геометрическое место точек, определяемое неравенствами

Введение в математический анализ.

Вычислить пределы функций. Найти . Найти . Найти . Найти . Найти

Функция задается различными аналитическими выражениями для различных областей независимой переменной.

Производная и дифференциал

Найти производные заданных функций ; ;

Найти . Найти :

Составить уравнения касательной и нормали к кривой  в точке с абсциссой .

Русские художники