Пределы и непрерывность функции

Часы Pandora Gold

Часы Pandora Gold

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Живопись Франции
Живопись Испания
Курбе и реализм
Промышленная архитектура и
эстетика века машин
Инженерная графика
Изображения геометрических
фигур
Метод центрального
проецирования
Аксонометрические
изображения деталей
Graphisoft
Строительное проектирование
Импрессионизм
художественная школа
3D Studio VIZ
Архитектурные программы
Autodesk AutoCAD
аналитическая геометрия
Исследование функций
Дифференциальное исчисление
Элементы линейной алгебры
Пределы
Векторная алгебра
Математический анализ
Предел функции
Производная и дифференциал
Неопределенный интеграл
Числовые последовательности
Графические методы решения задач
Изображения фигур на плоскости
ArchiCAD
Архитектура во время перемен
Русские художники начала 20 века
Период конструктивизма
Баухаус
Архитектура Москвы
Обьединения русских художников и скульпторов
Русские художники шестидесятники
Восточное возрождение
Западное возрождение
Фома Аквинский
Проторенессанс XIII век
Maya 3D
Работа с мазками
Редактирование эффектов
рисования
Дополнительные эффекты
рисования
Центральный процессор
персонального компьютера
Лекции по физике теория газов
История развития ПК
Сетевые службы Active Directory
Диспетчер доступа
Межсетевое экранирование
Ядерные топливные циклы

Предел функции Совокупность значений некоторых величин, как правило, лишенных физического содержания, представляет собой некоторые числовые множества. Будем обозначать множества большими буквами латинского алфавита: А,В,..,Х,У. Окрестностью О (а) точки а называется любой интервал a < x < b, окружающий эту точку, из которого, как правило, удалена сама точка а.

Пример. Доказать, что  (2х +1) = 7.

Пример . Функция у = sin х ограничена на всей числовой оси, так как . Функция  не ограничена на множестве, содержащем точку х = 0.

Односторонние пределы Любой интервал (a, а), правым концом которого является точка а, называется левой окрестностью точки а.  Аналогично любой интервал (a, b), левым концом которого является точка а, называется ее правой окрестностью. Методы интегрирования замены переменной и интегрирование по частям

Пример. Функция f(x) = x2 является бесконечно малой при x®0, а  g (x) = бесконечно большой (при x ¹ 0).

  Замечание.Если , то в силу определения предела функции получаем: ïf(x)-Aï<e при xÎ O(а, б), что означает, что f(x)A является бесконечно малой при x® a. Тогда, полагая f(x)-A=a(x), имеем f(x) = A + a(x), где a(x) ® 0 при x ® a. Рассмотрим на примерах основные приёмы раскрытия неопределенностей

Пример . Найти Пример. Найти пределы: , ,

Некоторые признаки существования предела функции Не всякая функция имеет предел, даже будучи ограниченной. Например, sin x при x ® ¥ предела не имеет, хотя £ 1.  Укажем два признака существования предела функции.

Первый и второй замечательные пределы

Теорема. Предел отношения синуса бесконечно малой дуги к самой дуге, выраженной в радианах, равен единице, то есть   .  Этот предел называют первым замечательным пределом. С его помощью вычисляют пределы выражений, содержащих тригонометрические функции.

Непрерывность функции Функция f(x), определенная на множестве Х, называется непрерывной в точке , если

Пример. Функция   является непрерывной справа в точке х = 0, слева же от этой точки она вообще не определена.

Точка разрыва функции, не являющаяся точкой разрыва первого рода или точкой устранимого разрыва, является точкой разрыва второго рода.

  Все элементарные функции непрерывны в области определения Так что  всюду непрерывна, так как всюду определена, а, например, функция  разрывна в точке .

Теорема Больцано-Коши об обращении функции в нуль.

Русские художники